Thermoregulatory reflexes and cutaneous active vasodilation during heat stress in hypertensive humans.

نویسندگان

  • D L Kellogg
  • S R Morris
  • S B Rodriguez
  • Y Liu
  • M Grossmann
  • G Stagni
  • A M Shepherd
چکیده

During dynamic exercise in the heat, increases in skin blood flow are attenuated in hypertensive subjects when compared with normotensive subjects. We studied responses to passive heat stress (water-perfused suits) in eight hypertensive and eight normotensive subjects. Forearm blood flow was measured by venous-occlusion plethysmography, mean arterial pressure (MAP) was measured by Finapres, and forearm vascular conductance (FVC) was calculated. Bretylium tosylate (BT) iontophoresis was used to block active vasoconstriction in a small area of skin. Skin blood flow was indexed by laser-Doppler flowmetry at BT-treated and untreated sites, and cutaneous vascular conductance was calculated. In normothermia, FVC was lower in hypertensive than in normotensive subjects (P < 0.01). During heat stress, FVC rose to similar levels in both groups (P > 0.80); concurrent cutaneous vascular conductance increases were unaffected by BT treatment (P > 0.60). MAP was greater in hypertensive than in normotensive subjects during normothermia (P < 0.05, hypertensive vs. normotensive subjects). During hyperthermia, MAP fell in hypertensive subjects but showed no statistically significant change in normotensive subjects (P < 0.05, hypertensive vs. normotensive subjects). The internal temperature at which vasodilation began did not differ between groups (P > 0.80). FVC is reduced during normothermia in unmedicated hypertensive subjects; however, they respond to passive heat stress in a fashion no different from normotensive subjects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Skin blood flow in adult human thermoregulation: how it works, when it does not, and why.

The thermoregulatory control of human skin blood flow is vital to the maintenance of normal body temperatures during challenges to thermal homeostasis. Sympathetic neural control of skin blood flow includes the noradrenergic vasoconstrictor system and a sympathetic active vasodilator system, the latter of which is responsible for 80% to 90% of the substantial cutaneous vasodilation that occurs ...

متن کامل

Invited Review HIGHLIGHTED TOPIC A Physiological Systems Approach to Human and Mammalian Thermoregulation In vivo mechanisms of cutaneous vasodilation and vasoconstriction in humans during thermoregulatory challenges

Kellogg, D. L., Jr. In vivo mechanisms of cutaneous vasodilation and vasoconstriction in humans during thermoregulatory challenges. J Appl Physiol 100: 1709–1718, 2006; doi:10.1152/japplphysiol.01071.2005.—This review focuses on the neural and local mechanisms that have been demonstrated to effect cutaneous vasodilation and vasoconstriction in response to heat and cold stress in vivo in humans....

متن کامل

A Physiological Systems Approach to Human and Mammalian Thermoregulation In vivo mechanisms of cutaneous vasodilation and vasoconstriction in humans during thermoregulatory challenges

Kellogg, D. L., Jr. In vivo mechanisms of cutaneous vasodilation and vasoconstriction in humans during thermoregulatory challenges. J Appl Physiol 100: 1709–1718, 2006; doi:10.1152/japplphysiol.01071.2005.—This review focuses on the neural and local mechanisms that have been demonstrated to effect cutaneous vasodilation and vasoconstriction in response to heat and cold stress in vivo in humans....

متن کامل

Plasma hyperosmolality elevates the internal temperature threshold for active thermoregulatory vasodilation during heat stress in humans.

Plasma hyperosmolality delays the response in skin blood flow to heat stress by elevating the internal temperature threshold for cutaneous vasodilation. This elevation could be because of a delayed onset of cutaneous active vasodilation and/or to persistent cutaneous active vasoconstriction. Seven healthy men were infused with either hypertonic (3% NaCl) or isotonic (0.9% NaCl) saline and passi...

متن کامل

In vivo mechanisms of cutaneous vasodilation and vasoconstriction in humans during thermoregulatory challenges.

This review focuses on the neural and local mechanisms that have been demonstrated to effect cutaneous vasodilation and vasoconstriction in response to heat and cold stress in vivo in humans. First, our present understanding of the mechanisms by which sympathetic cholinergic nerves mediate cutaneous active vasodilation during reflex responses to whole body heating is discussed. These mechanisms...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 85 1  شماره 

صفحات  -

تاریخ انتشار 1998